Module deepposekit.models.layers.imagenet_densenet
Expand source code
# DenseNet models for Keras.
## Reference paper
# - [Densely Connected Convolutional Networks]
# (https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
## Reference implementation
# - [Torch DenseNets]
# (https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua)
# - [TensorNets]
# (https://github.com/taehoonlee/tensornets/blob/master/tensornets/densenets.py)
# Modified by Jacob M. Graving from:
# https://github.com/keras-team/keras-applications/blob/
# master/keras_applications/densenet.py
# to match the stride 16 ResNet found here:
# https://github.com/tensorflow/tensorflow/blob/
# master/tensorflow/contrib/slim/python/slim/nets/resnet_v1.py
# All modifications are Copyright 2019 Jacob M. Graving <jgraving@gmail.com>
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import os
import warnings
import numpy as np
import tensorflow.keras as keras
from tensorflow.python.keras.applications import imagenet_utils
from tensorflow.python.keras.applications.imagenet_utils import decode_predictions
from tensorflow.keras.layers import Layer
from tensorflow.python.keras.applications import keras_applications
_obtain_input_shape = imagenet_utils.imagenet_utils._obtain_input_shape
backend = keras.backend
layers = keras.layers
models = keras.models
keras_utils = keras.utils
BASE_WEIGTHS_PATH = (
"https://github.com/keras-team/keras-applications/" "releases/download/densenet/"
)
DENSENET121_WEIGHT_PATH = (
BASE_WEIGTHS_PATH + "densenet121_weights_tf_dim_ordering_tf_kernels.h5"
)
DENSENET121_WEIGHT_PATH_NO_TOP = (
BASE_WEIGTHS_PATH + "densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5"
)
DENSENET169_WEIGHT_PATH = (
BASE_WEIGTHS_PATH + "densenet169_weights_tf_dim_ordering_tf_kernels.h5"
)
DENSENET169_WEIGHT_PATH_NO_TOP = (
BASE_WEIGTHS_PATH + "densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5"
)
DENSENET201_WEIGHT_PATH = (
BASE_WEIGTHS_PATH + "densenet201_weights_tf_dim_ordering_tf_kernels.h5"
)
DENSENET201_WEIGHT_PATH_NO_TOP = (
BASE_WEIGTHS_PATH + "densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5"
)
def dense_block(x, blocks, name, dilation=1):
"""A dense block.
# Arguments
x: input tensor.
blocks: integer, the number of building blocks.
name: string, block label.
# Returns
output tensor for the block.
"""
for i in range(blocks):
x = conv_block(x, 32, name=name + "_block" + str(i + 1), dilation=dilation)
return x
def transition_block(x, reduction, name, pool=True):
"""A transition block.
# Arguments
x: input tensor.
reduction: float, compression rate at transition layers.
name: string, block label.
# Returns
output tensor for the block.
"""
bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_bn")(x)
x = layers.Activation("relu", name=name + "_relu")(x)
x = layers.Conv2D(
int(backend.int_shape(x)[bn_axis] * reduction),
1,
use_bias=False,
name=name + "_conv",
)(x)
if pool:
x = layers.AveragePooling2D(2, strides=2, name=name + "_pool")(x)
return x
def conv_block(x, growth_rate, name, dilation=1):
"""A building block for a dense block.
# Arguments
x: input tensor.
growth_rate: float, growth rate at dense layers.
name: string, block label.
# Returns
Output tensor for the block.
"""
bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn")(
x
)
x1 = layers.Activation("relu", name=name + "_0_relu")(x1)
x1 = layers.Conv2D(4 * growth_rate, 1, use_bias=False, name=name + "_1_conv")(x1)
x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn")(
x1
)
x1 = layers.Activation("relu", name=name + "_1_relu")(x1)
x1 = layers.Conv2D(
growth_rate,
3,
padding="same",
use_bias=False,
dilation_rate=dilation,
name=name + "_2_conv",
)(x1)
x = layers.Concatenate(axis=bn_axis, name=name + "_concat")([x, x1])
return x
def DenseNet(
blocks,
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
residuals=False,
**kwargs
):
"""Instantiates the DenseNet architecture.
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
# Arguments
blocks: numbers of building blocks for the four dense layers.
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor
(i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `'channels_last'` data format)
or `(3, 224, 224)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
pooling: optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
if not (weights in {"imagenet", None} or os.path.exists(weights)):
raise ValueError(
"The `weights` argument should be either "
"`None` (random initialization), `imagenet` "
"(pre-training on ImageNet), "
"or the path to the weights file to be loaded."
)
if weights == "imagenet" and include_top and classes != 1000:
raise ValueError(
'If using `weights` as `"imagenet"` with `include_top`'
" as true, `classes` should be 1000"
)
# Determine proper input shape
input_shape = _obtain_input_shape(
input_shape,
default_size=224,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights,
)
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
res_outputs = []
x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
x = layers.Conv2D(64, 7, strides=2, use_bias=False, name="conv1/conv")(x)
x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name="conv1/bn")(x)
x = layers.Activation("relu", name="conv1/relu")(x)
x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
x = layers.MaxPooling2D(3, strides=2, name="pool1")(x)
x = dense_block(x, blocks[0], name="conv2")
if residuals == 2:
res_outputs = x
x = transition_block(x, 0.5, name="pool2")
x = dense_block(x, blocks[1], name="conv3")
if residuals == 3:
res_outputs = x
x = transition_block(x, 0.5, name="pool3")
x = dense_block(x, blocks[2], name="conv4")
x = transition_block(x, 0.5, name="pool4", pool=False)
x = dense_block(x, blocks[3], name="conv5", dilation=2)
x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name="bn")(x)
x = layers.Activation("relu", name="relu")(x)
if include_top:
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
x = layers.Dense(classes, activation="softmax", name="fc1000")(x)
else:
if pooling == "avg":
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
elif pooling == "max":
x = layers.GlobalMaxPooling2D(name="max_pool")(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
if blocks == [6, 12, 24, 16]:
model = models.Model(inputs, x, name="densenet121")
elif blocks == [6, 12, 32, 32]:
model = models.Model(inputs, x, name="densenet169")
elif blocks == [6, 12, 48, 32]:
model = models.Model(inputs, x, name="densenet201")
else:
model = models.Model(inputs, x, name="densenet")
# Load weights.
if weights == "imagenet":
if include_top:
if blocks == [6, 12, 24, 16]:
weights_path = keras_utils.get_file(
"densenet121_weights_tf_dim_ordering_tf_kernels.h5",
DENSENET121_WEIGHT_PATH,
cache_subdir="models",
file_hash="9d60b8095a5708f2dcce2bca79d332c7",
)
elif blocks == [6, 12, 32, 32]:
weights_path = keras_utils.get_file(
"densenet169_weights_tf_dim_ordering_tf_kernels.h5",
DENSENET169_WEIGHT_PATH,
cache_subdir="models",
file_hash="d699b8f76981ab1b30698df4c175e90b",
)
elif blocks == [6, 12, 48, 32]:
weights_path = keras_utils.get_file(
"densenet201_weights_tf_dim_ordering_tf_kernels.h5",
DENSENET201_WEIGHT_PATH,
cache_subdir="models",
file_hash="1ceb130c1ea1b78c3bf6114dbdfd8807",
)
else:
if blocks == [6, 12, 24, 16]:
weights_path = keras_utils.get_file(
"densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5",
DENSENET121_WEIGHT_PATH_NO_TOP,
cache_subdir="models",
file_hash="30ee3e1110167f948a6b9946edeeb738",
)
elif blocks == [6, 12, 32, 32]:
weights_path = keras_utils.get_file(
"densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5",
DENSENET169_WEIGHT_PATH_NO_TOP,
cache_subdir="models",
file_hash="b8c4d4c20dd625c148057b9ff1c1176b",
)
elif blocks == [6, 12, 48, 32]:
weights_path = keras_utils.get_file(
"densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5",
DENSENET201_WEIGHT_PATH_NO_TOP,
cache_subdir="models",
file_hash="c13680b51ded0fb44dff2d8f86ac8bb1",
)
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
if residuals:
model = models.Model(inputs, res_outputs, name="densenet121")
return model
def DenseNet121(
include_top=False,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
residuals=False,
**kwargs
):
return DenseNet(
[6, 12, 24, 16],
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
residuals,
**kwargs
)
def DenseNet169(
include_top=False,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs
):
return DenseNet(
[6, 12, 32, 32],
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
**kwargs
)
def DenseNet201(
include_top=False,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs
):
return DenseNet(
[6, 12, 48, 32],
include_top,
weights,
input_tensor,
input_shape,
pooling,
classes,
**kwargs
)
MODELS = {
"densenet121": DenseNet121,
"densenet169": DenseNet169,
"densenet201": DenseNet201,
}
if __name__ == "__main__":
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.layers import Input
from tensorflow.keras import Model
input_layer = Input((192, 192, 3))
model = MobileNetV2(include_top=False)
pretrained_output = model(input_layer)
model = Model(inputs=input_layer, outputs=pretrained_output)
Functions
def DenseNet(blocks, include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, residuals=False, **kwargs)
-
Instantiates the DenseNet architecture. Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at
~/.keras/keras.json
.Arguments
blocks: numbers of building blocks for the four dense layers. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `'channels_last'` data format) or `(3, 224, 224)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified.
Returns
A Keras model instance.
Raises
ValueError: in case of invalid argument for `weights`, or invalid input shape.
Expand source code
def DenseNet( blocks, include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, residuals=False, **kwargs ): """Instantiates the DenseNet architecture. Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. # Arguments blocks: numbers of building blocks for the four dense layers. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `'channels_last'` data format) or `(3, 224, 224)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if not (weights in {"imagenet", None} or os.path.exists(weights)): raise ValueError( "The `weights` argument should be either " "`None` (random initialization), `imagenet` " "(pre-training on ImageNet), " "or the path to the weights file to be loaded." ) if weights == "imagenet" and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top`' " as true, `classes` should be 1000" ) # Determine proper input shape input_shape = _obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights, ) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 res_outputs = [] x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input) x = layers.Conv2D(64, 7, strides=2, use_bias=False, name="conv1/conv")(x) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name="conv1/bn")(x) x = layers.Activation("relu", name="conv1/relu")(x) x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x) x = layers.MaxPooling2D(3, strides=2, name="pool1")(x) x = dense_block(x, blocks[0], name="conv2") if residuals == 2: res_outputs = x x = transition_block(x, 0.5, name="pool2") x = dense_block(x, blocks[1], name="conv3") if residuals == 3: res_outputs = x x = transition_block(x, 0.5, name="pool3") x = dense_block(x, blocks[2], name="conv4") x = transition_block(x, 0.5, name="pool4", pool=False) x = dense_block(x, blocks[3], name="conv5", dilation=2) x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name="bn")(x) x = layers.Activation("relu", name="relu")(x) if include_top: x = layers.GlobalAveragePooling2D(name="avg_pool")(x) x = layers.Dense(classes, activation="softmax", name="fc1000")(x) else: if pooling == "avg": x = layers.GlobalAveragePooling2D(name="avg_pool")(x) elif pooling == "max": x = layers.GlobalMaxPooling2D(name="max_pool")(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = keras_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. if blocks == [6, 12, 24, 16]: model = models.Model(inputs, x, name="densenet121") elif blocks == [6, 12, 32, 32]: model = models.Model(inputs, x, name="densenet169") elif blocks == [6, 12, 48, 32]: model = models.Model(inputs, x, name="densenet201") else: model = models.Model(inputs, x, name="densenet") # Load weights. if weights == "imagenet": if include_top: if blocks == [6, 12, 24, 16]: weights_path = keras_utils.get_file( "densenet121_weights_tf_dim_ordering_tf_kernels.h5", DENSENET121_WEIGHT_PATH, cache_subdir="models", file_hash="9d60b8095a5708f2dcce2bca79d332c7", ) elif blocks == [6, 12, 32, 32]: weights_path = keras_utils.get_file( "densenet169_weights_tf_dim_ordering_tf_kernels.h5", DENSENET169_WEIGHT_PATH, cache_subdir="models", file_hash="d699b8f76981ab1b30698df4c175e90b", ) elif blocks == [6, 12, 48, 32]: weights_path = keras_utils.get_file( "densenet201_weights_tf_dim_ordering_tf_kernels.h5", DENSENET201_WEIGHT_PATH, cache_subdir="models", file_hash="1ceb130c1ea1b78c3bf6114dbdfd8807", ) else: if blocks == [6, 12, 24, 16]: weights_path = keras_utils.get_file( "densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5", DENSENET121_WEIGHT_PATH_NO_TOP, cache_subdir="models", file_hash="30ee3e1110167f948a6b9946edeeb738", ) elif blocks == [6, 12, 32, 32]: weights_path = keras_utils.get_file( "densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5", DENSENET169_WEIGHT_PATH_NO_TOP, cache_subdir="models", file_hash="b8c4d4c20dd625c148057b9ff1c1176b", ) elif blocks == [6, 12, 48, 32]: weights_path = keras_utils.get_file( "densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5", DENSENET201_WEIGHT_PATH_NO_TOP, cache_subdir="models", file_hash="c13680b51ded0fb44dff2d8f86ac8bb1", ) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) if residuals: model = models.Model(inputs, res_outputs, name="densenet121") return model
def DenseNet121(include_top=False, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, residuals=False, **kwargs)
-
Expand source code
def DenseNet121( include_top=False, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, residuals=False, **kwargs ): return DenseNet( [6, 12, 24, 16], include_top, weights, input_tensor, input_shape, pooling, classes, residuals, **kwargs )
def DenseNet169(include_top=False, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs)
-
Expand source code
def DenseNet169( include_top=False, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs ): return DenseNet( [6, 12, 32, 32], include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs )
def DenseNet201(include_top=False, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs)
-
Expand source code
def DenseNet201( include_top=False, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs ): return DenseNet( [6, 12, 48, 32], include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs )
def conv_block(x, growth_rate, name, dilation=1)
-
A building block for a dense block.
Arguments
x: input tensor. growth_rate: float, growth rate at dense layers. name: string, block label.
Returns
Output tensor for the block.
Expand source code
def conv_block(x, growth_rate, name, dilation=1): """A building block for a dense block. # Arguments x: input tensor. growth_rate: float, growth rate at dense layers. name: string, block label. # Returns Output tensor for the block. """ bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn")( x ) x1 = layers.Activation("relu", name=name + "_0_relu")(x1) x1 = layers.Conv2D(4 * growth_rate, 1, use_bias=False, name=name + "_1_conv")(x1) x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn")( x1 ) x1 = layers.Activation("relu", name=name + "_1_relu")(x1) x1 = layers.Conv2D( growth_rate, 3, padding="same", use_bias=False, dilation_rate=dilation, name=name + "_2_conv", )(x1) x = layers.Concatenate(axis=bn_axis, name=name + "_concat")([x, x1]) return x
def dense_block(x, blocks, name, dilation=1)
-
A dense block.
Arguments
x: input tensor. blocks: integer, the number of building blocks. name: string, block label.
Returns
output tensor for the block.
Expand source code
def dense_block(x, blocks, name, dilation=1): """A dense block. # Arguments x: input tensor. blocks: integer, the number of building blocks. name: string, block label. # Returns output tensor for the block. """ for i in range(blocks): x = conv_block(x, 32, name=name + "_block" + str(i + 1), dilation=dilation) return x
def transition_block(x, reduction, name, pool=True)
-
A transition block.
Arguments
x: input tensor. reduction: float, compression rate at transition layers. name: string, block label.
Returns
output tensor for the block.
Expand source code
def transition_block(x, reduction, name, pool=True): """A transition block. # Arguments x: input tensor. reduction: float, compression rate at transition layers. name: string, block label. # Returns output tensor for the block. """ bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_bn")(x) x = layers.Activation("relu", name=name + "_relu")(x) x = layers.Conv2D( int(backend.int_shape(x)[bn_axis] * reduction), 1, use_bias=False, name=name + "_conv", )(x) if pool: x = layers.AveragePooling2D(2, strides=2, name=name + "_pool")(x) return x